Code Cleanup

A Data Scientist’s Guide to
+4Sparkling Code /4

“Why should I care about clean code?”

— a young data scientist

“Why don’t they care about clean code?”

— an engineer working with data scientists

Lies we tell ourselves Reality

e “I'm only gonna run this query once” e “Can you check what happens if?”

e “This won’t change” e “Let me add just this one small thing”

e “No one's gonna need this again” e “Can you have a look at these old notebook from your
e “| don’t think we’ll run this analysis again” former coworker?”

e “We can just deploy the notebook to e “No!”

production”

We read
more code
than we
write!

“Dirty” Code Slows Down:
e Takes more time to understand
e Harderto change
e Often hides bugs
e Makes reproducibility difficult

[iyou write clean code

its easier to understand

meme-generator.com

What makes code easy to read?

Meaningful
Names

def transform(data):
for k, v in data.items():
datalk] = round(v * 0.9, 2)

return data

Meaningful
Names

def transform(data):
for k, v in data.items():
calculate new price
datalk] = round(v * 0.9, 2)

return data

Meaningful
Names

e Use descriptive names
o Longer > shorter
o Searchable
Explain code through naming
Avoid generic names like
transform, item, .. etc

def discount_prices(room_prices, discount=0.1):
for room, price in room_prices.items():
new_price = price * (1 - discount)

room_prices[room] = round(new_price, 2)

return room_prices

Use Short
Functions!

YAHIFYOU.COULD PUTATL;DR
- ON-THAT

" THAT'D.BE GREAT:

def compute_features(df_map, other_data):

destination_cols = ["destination_id", "cdestination_name",

"latitude", "longitude",]

keep_cols = ["some_id", "another_id", "hotel_id"]

keep only unique hotels
data = df_map[[*keep_cols, *destination_cols]].drop_duplicates(
subset=["some_id", "destination_id"]

)

mean of features
mean_features = (

)

df_

map .groupby("“some_id")[["stars", "review_score"]].mean().reset_index()

add prices

df =

)

(
df_map[["some_id", "other_id"]]
.dropna(subset=["some_id", "other_id"])

.drop_duplicates()

room_price = ...

min_price = (

)

pd.

merge(room_price, df, on="some_id", how="inner")

.groupby(["other_id", "currency"])
.agg(min_price=("price", np.min))
.assign(min_price_usd=lambda x: x["min_price"].copy())
.reset_index()

align index

data

pd.merge(hotel_df, min_price, on="some_id", how="left")

add room count
rooms_count = (

)

data

df_

map .groupby ("some_id")["other_id"].nunique().rename("rooms_count")

pd.merge(data, rooms_count.reset_index(), on="some_id", how="left")

Use Short
Functions!

e Structure Long code into
shorter functions

Also, most comments are bad
Comments tend to go stale
Instead of comments, explain
the what in the function name

Keep comments to explain the
why

Avoid Mixi

VoI IXIng bad_ids = [hotel_ + str(id_) for id_ in [123, 42, 888]]
[)

AbStraCtlon df = df[~df.hotel_name.isin(bad_ids)]

Layers features = compute_features(df)

Don’t put low-level operations on the
same level as high-level functions

Avoid Mixing
Abstraction
Layers

e Group operations together that
have the same level of
abstraction

e Structure code into abstraction
hierarchies by using functions

e Same for variable names

bad_ids = [hotel_ + str(id_) for id_ in [123, 42, 888]]
df = df[~df.hotel_name.isin(bad_ids)]

features = compute_features(df)

Better:

df_filtered = filter_out_bad_ids(df)

features = compute_features(df_filtered)

Ain’t got no time for this

Measure

S 4
S 4

Visualize

A

>

Prioritize

A

A
[V

You can only improve what you
measure,

— Jom Peters —

AZ QUOTES

Or someone else...

Measuring
Code Complexity

def some_long_function(
first_parameter: int,

second_parameter: int,

Function Length . third_parameter: int,

first_parameter = (
e Checks length of a first_parameter +
. second_parameter +
function
e Checks number of input)

first_parameter = (
and output parameter

third_parameter

first_parameter -
second_parameter +
third_parameter

)

first_parameter = (
first_parameter +
second_parameter -
third_parameter

)

first_parameter = (
first_parameter
second_parameter

third_parameter

return first_parameter

Cognitive

Complexity
® Increments for breaks
in the flow
o loops &
conditionals
o catch, switch
statements

o breaks, continue

® Increments for nested
structures

def f(a, b):
if a:
for i in range(b):
if b:
return 1

Abstraction Layer

e Only allow generic def foo(variables)

variable names in small items = []

functions for var in variables:

o items, var, variables, items += [var]
result, ...

return items
o The more generic,

the smaller the
function

Expression
Complexity

if (df.sold_out.any() and
df[~(df.is_new_hotel & ~df.is_covid)

| df.price_value.isna()].any()):

e Measures complexity of
expressions

do_something(df)
e Rule of Thumb: if

expression goes over
multiple lines, consider
splitting it

All of these
available as flake8

[]
Puan flake8
- flake8-cognitive-complexit a e

- flake8-adjustable-complexit

- flake8-expression-complexit
- flake8-functions

https://github.com/Melevir/flake8-cognitive-complexity
https://github.com/best-doctor/flake8-adjustable-complexity
https://github.com/best-doctor/flake8-expression-complexity#error-codes
https://github.com/best-doctor/flake8-functions

Now on to collect some
data...

Com PUte. Compute Code Complexity
Complexity

Compute code complexity per repository.

(] []
Heuristics
repo = 'oi_datascience’
L Used the flake8 df = get_repo_complexities(ota_path, repo)
implementation to compute At head(3)

complexity heuristics

e Depending on needs, decide
how often to run

e Jupyter notebook might be to_new_dataset 138 19 9
good enough (@

e Store in your favorite

database °A

function_name func_lineno func_length cognitive_complexity sum_expression_compl

atching_pattern 81 25 "

__init__ 25 18 9

Code Complexity of our Repos over Time

w

Visualize & Prioritize

e How are your repositories
developing over time? 2

Complexity

\

Feb 2023 Mar 2023 Mar 2023

Jan 2023

Visualize & Prioritize

How are your repositories
developing over time?

Which files/functions should
we tackle first?

Set aside some time to focus

on improving your code base.

As little as 2hrs a months
every month can have a big
impact

function func

cognitive
arcin AL exj

sum expression max expression num num
omplex eXij eXij c

OMpIeXIL\ OMmpilexIt\ araumen

generate_|

get_latest_
process_de
process_se

run_query

Good candidate to
refactor

Visualize & Prioritize

How are your repositories
developing over time?

Which files/functions should
we tackle first?

Set aside some time to focus

on improving your code base.

As little as 2hrs a months
every month can have a big
impact

fnnnl-inn fiine rannitiva cnim avnrassion max expression num num

ty complexity arguments returns n

After Refactoring:

function func cognitive sum expression max expression num num
name length complexity complexity complexity arguments returns r

get_lates
generate
generate

"

In the end, it’s about
culture

How to foster a clean code culture in your team:

e Regularly sync & discuss which code needs
improvement

e Fixed time per month to work on code
quality

e Use pair programming to ease burden &
additional knowledge sharing

e |earn about best practices through e.g.
reading groups

oM . nsion
Thank you for your time!

Clean Code
A Handbook of Agile Software Craftsmanship

Resources |
—

e Clean Code [pdf,] by Uncle Bob i
o All in Java but still worth a read

»

o Recommended Chapters: 1-5 and 17. Chp 6-10 go deeper into data structures,
classes etc. 14-16 are Java very specific and less interesting for python
developers

https://drive.google.com/file/d/1HJr76pKcoCmqKYypiBniEL4uQZhsACv-/view?usp=share_link
https://www.youtube.com/playlist?list=PLmmYSbUCWJ4x1GO839azG_BBw8rkh-zOj
https://git.otainsight.com/ota-insight-repos/ota-insight-product-rd/data-analysis-knowledge/-/blob/master/notebooks/Code_Complexity.ipynb

