
Code Cleanup
A Data Scientist’s Guide to

✨Sparkling Code✨

Corrie Bartelheimer
Senior Data Scientist

“Why should I care about clean code?”
– a young data scientist

“Why don’t they care about clean code?”
– an engineer working with data scientists

Lies we tell ourselves

● “I’m only gonna run this query once”

● “This won’t change”

● “No one's gonna need this again”

● “I don’t think we’ll run this analysis again”

● “We can just deploy the notebook to

production”

Reality

● “Can you check what happens if ….?”

● “Let me add just this one small thing”

● “Can you have a look at these old notebook from your

former coworker?”

● “No!”

We read
more code
than we
write!
“Dirty” Code Slows Down:
● Takes more time to understand
● Harder to change
● Often hides bugs
● Makes reproducibility difficult

What makes code easy to read?

Meaningful
Names

def transform(data):

 for k, v in data.items():

 data[k] = round(v * 0.9, 2)

 return data

Meaningful
Names

def transform(data):

 for k, v in data.items():

 # calculate new price

 data[k] = round(v * 0.9, 2)

 return data

Meaningful
Names

● Use descriptive names
○ Longer > shorter
○ Searchable

● Explain code through naming
● Avoid generic names like

transform, item, .. etc

def discount_prices(room_prices, discount=0.1):

 for room, price in room_prices.items():

 new_price = price * (1 - discount)

 room_prices[room] = round(new_price, 2)

 return room_prices

Use Short
Functions!

def compute_features(df_map, other_data):

 destination_cols = ["destination_id", "cdestination_name",
 "latitude","longitude",]

 keep_cols = ["some_id","another_id","hotel_id"]

 # keep only unique hotels
 data = df_map[[*keep_cols, *destination_cols]].drop_duplicates(
 subset=["some_id", "destination_id"]
)

 # mean of features
 mean_features = (
 df_map.groupby("some_id")[["stars","review_score"]].mean().reset_index()
)

 # add prices
 df = (
 df_map[["some_id", "other_id"]]
 .dropna(subset=["some_id", "other_id"])
 .drop_duplicates()
)
 room_price = ...

 min_price = (
 pd.merge(room_price, df, on="some_id", how="inner")
 .groupby(["other_id", "currency"])
 .agg(min_price=("price", np.min))
 .assign(min_price_usd=lambda x: x["min_price"].copy())
 .reset_index()
)
 # align index
 data = pd.merge(hotel_df, min_price, on="some_id", how="left")

 # add room count
 rooms_count = (
 df_map.groupby("some_id")["other_id"].nunique().rename("rooms_count")
)
 data = pd.merge(data, rooms_count.reset_index(), on="some_id", how="left")

Use Short
Functions!
● Structure Long code into

shorter functions

Also, most comments are bad
● Comments tend to go stale
● Instead of comments, explain

the what in the function name
● Keep comments to explain the

why

def compute_features(df_map, other_data):

 destination_cols = ["destination_id", "cdestination_name",
 "latitude","longitude",]

 keep_cols = ["some_id","another_id","hotel_id"]

 # keep only unique hotels
 data = df_map[[*keep_cols, *destination_cols]].drop_duplicates(
 subset=["some_id", "destination_id"]
)

 # mean of features
 mean_features = (
 df_map.groupby("some_id")[["stars","review_score"]].mean().reset_index()
)

 # add prices
 df = (
 df_map[["some_id", "other_id"]]
 .dropna(subset=["some_id", "other_id"])
 .drop_duplicates()
)
 room_price = ...

 min_price = (
 pd.merge(room_price, df, on="some_id", how="inner")
 .groupby(["other_id", "currency"])
 .agg(min_price=("price", np.min))
 .assign(min_price_usd=lambda x: x["min_price"].copy())
 .reset_index()
)
 # align index
 data = pd.merge(hotel_df, min_price, on="some_id", how="left")

 # add room count
 rooms_count = (
 df_map.groupby("some_id")["other_id"].nunique().rename("rooms_count")
)
 data = pd.merge(data, rooms_count.reset_index(), on="some_id", how="left")

def compute_features(df_map, other_data):

 data = get_unique_hotels(df_map)

 mean_features = get_mean_features(df_map)

 data = add_mean_price(data, mean_features)

 data = add_room_count(data, other_data)

 return data

Avoid Mixing
Abstraction
Layers
Don’t put low-level operations on the
same level as high-level functions

bad_ids = [hotel_ + str(id_) for id_ in [123, 42, 888]]

df = df[~df.hotel_name.isin(bad_ids)]

features = compute_features(df)

Avoid Mixing
Abstraction
Layers
● Group operations together that

have the same level of
abstraction

● Structure code into abstraction
hierarchies by using functions

● Same for variable names

bad_ids = [hotel_ + str(id_) for id_ in [123, 42, 888]]

df = df[~df.hotel_name.isin(bad_ids)]

features = compute_features(df)

df_filtered = filter_out_bad_ids(df)

features = compute_features(df_filtered)

Better:

Ain’t got no time for this

Measure PrioritizeVisualize

Or someone else…

Measuring
Code Complexity

Function Length
● Checks length of a

function
● Checks number of input

and output parameter

def some_long_function(

 first_parameter: int,

 second_parameter: int,

 third_parameter: int,

):

 first_parameter = (

 first_parameter +

 second_parameter +

 third_parameter

)

 first_parameter = (

 first_parameter -

 second_parameter +

 third_parameter

)

 first_parameter = (

 first_parameter +

 second_parameter -

 third_parameter

)

 first_parameter = (

 first_parameter

 second_parameter

 third_parameter

)

 return first_parameter

Cognitive
Complexity
● Increments for breaks

in the flow
○ loops &

conditionals
○ catch, switch

statements
○ breaks, continue

● Increments for nested
structures

def f(a, b):
 if a:
 for i in range(b):
 if b:
 return 1

Abstraction Layer

● Only allow generic
variable names in small
functions
○ items, var, variables,

result, …
○ The more generic,

the smaller the
function

def foo(variables)

 items = []

 for var in variables:

 items += [var]

 return items

Expression
Complexity
● Measures complexity of

expressions

● Rule of Thumb: if
expression goes over
multiple lines, consider
splitting it

if (df.sold_out.any() and

 df[~(df.is_new_hotel & ~df.is_covid)

 | df.price_value.isna()].any()):

 do_something(df)

All of these
available as flake8
plugin:
- flake8-cognitive-complexity

- flake8-adjustable-complexity

- flake8-expression-complexity

- flake8-functions

https://github.com/Melevir/flake8-cognitive-complexity
https://github.com/best-doctor/flake8-adjustable-complexity
https://github.com/best-doctor/flake8-expression-complexity#error-codes
https://github.com/best-doctor/flake8-functions

Now on to collect some
data…

Compute
Complexity
Heuristics
● Used the flake8

implementation to compute
complexity heuristics

● Depending on needs, decide
how often to run

● Jupyter notebook might be
good enough 🤪

● Store in your favorite
database

❤

Visualize & Prioritize
● How are your repositories

developing over time?

Visualize & Prioritize
● How are your repositories

developing over time?

● Which files/functions should
we tackle first?

● Set aside some time to focus
on improving your code base.

● As little as 2hrs a months
every month can have a big
impact

Good candidate to
refactor

Visualize & Prioritize
● How are your repositories

developing over time?

● Which files/functions should
we tackle first?

● Set aside some time to focus
on improving your code base.

● As little as 2hrs a months
every month can have a big
impact

After Refactoring:

👏👏👏

In the end, it’s about
culture
How to foster a clean code culture in your team:

● Regularly sync & discuss which code needs
improvement

● Fixed time per month to work on code
quality

● Use pair programming to ease burden &
additional knowledge sharing

● Learn about best practices through e.g.
reading groups

Thank you for your time!

Resources
● Clean Code [pdf, videos] by Uncle Bob

○ All in Java but still worth a read

○ Recommended Chapters: 1-5 and 17. Chp 6-10 go deeper into data structures,

classes etc. 14-16 are Java very specific and less interesting for python

developers

● Notebook to compute complexity

https://drive.google.com/file/d/1HJr76pKcoCmqKYypiBniEL4uQZhsACv-/view?usp=share_link
https://www.youtube.com/playlist?list=PLmmYSbUCWJ4x1GO839azG_BBw8rkh-zOj
https://git.otainsight.com/ota-insight-repos/ota-insight-product-rd/data-analysis-knowledge/-/blob/master/notebooks/Code_Complexity.ipynb

