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Getting this into Python



import pymc3 as pm

with pm.Model() as lin_model:

    α = pm.Normal("α", 0, 100)
    β = pm.Normal("β", 0, 100)
    σ = pm.Exponential("σ", 1/100)

    μ = α + β*d["area"]

    y = pm.Normal("y", μ, σ,
observed=d["price"])
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with pm.Model() as hier_model:

    μ_α = pm.Normal("μ_α", 0, 100)
μ_β = ...

    σ = pm.Exponential("σ", 1/100)
σ_α = σ_β = ...

    α = pm.Normal("α", μ_α, σ_α,
                        shape=num_zip)
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with pm.Model() as hier_model:

    μ_α = pm.Normal("μ_α", 0, 20)
μ_β = pm.Normal("μ_β", 0, 5)

    σ = pm.Exponential("σ", 1/5)
σ_α = σ_β = ...

    α = pm.Normal("α", μ_α, σ_α,
                        shape=num_zip)
    β = pm.Normal("β", μ_β, σ_β,
                        shape=num_zip)

    μ = α[d["zip"]] + β[d["zip"]]*d["area"]

    y = pm.Normal("y", μ, σ,
observed=d["price"])

trace = pm.sample()

What about the priors?



Did it converge?



Did it converge?

import arviz as az

az.plot_trace(trace)
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Did it converge?

Rhat statistic smaller 
1.05?

Effective sample size / iterations 
greater 10%?

Monte Carlo se / posterior sd 
smaller 10%?



How good does my model fit the 
data?



How good does my model fit the data?

with hier_model:

    posterior_predictive = pm.sample_posterior_predictive(trace)
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What’s next?



What’s next?

● Iterate!
● More predictors!

○ Year of construction
○ House type
○ ...

● More hierarchies!
● Add group predictors!

○ Percentage of green areas
○ Economical indices

● Try different likelihoods
● Probably save more money...



Further resources Richard McElreath: Statistical Rethinking

- Port to PyMC3

Prior Recommendation by Stan Team

Michael Betancourts Case Studies

        BerlinBayesians

Icons by icons8

https://xcelab.net/rm/statistical-rethinking/
https://github.com/pymc-devs/resources/tree/master/Rethinking
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://betanalpha.github.io/writing/
https://www.meetup.com/de-DE/BerlinBayesians/
https://icons8.com


Thanks!

         @corrieaar

         corriebar
         Code and Notebooks

         www.samples-of-thoughts.com
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