
Bayesian Workflow with
PyMC and ArviZ
Corrie Bartelheimer
Data Scientist at Europace AG
 @corrieaar

First, the problem

First, the problem

First, the problem

First, the problem

First, the problem

First, the problem

First, the problem

First, the problem

Solution:
Hierarchical Bayesian Model

Solution: Hierarchical Bayesian Model

Solution: Hierarchical Bayesian Model

Solution: Hierarchical Bayesian Model

Solution: Hierarchical Bayesian Model

Solution: Hierarchical Bayesian Model

Getting this into Python

import pymc3 as pm

with pm.Model() as lin_model:

 α = pm.Normal("α", 0, 100)
 β = pm.Normal("β", 0, 100)
 σ = pm.Exponential("σ", 1/100)

 μ = α + β*d["area"]

 y = pm.Normal("y", μ, σ,
observed=d["price"])

Getting this into Python: PyMC3

import pymc3 as pm

with pm.Model() as lin_model:

 α = pm.Normal("α", 0, 100)
 β = pm.Normal("β", 0, 100)
 σ = pm.Exponential("σ", 1/100)

 μ = α + β*d["area"]

 y = pm.Normal("y", μ, σ,
observed=d["price"])

Getting this into Python: PyMC3

import pymc3 as pm

with pm.Model() as lin_model:

 α = pm.Normal("α", 0, 100)
 β = pm.Normal("β", 0, 100)
 σ = pm.Exponential("σ", 1/100)

 μ = α + β*d["area"]

 y = pm.Normal("y", μ, σ,
observed=d["price"])

Getting this into Python: PyMC3

Getting this into Python: PyMC3

import pymc3 as pm

with pm.Model() as lin_model:

 α = pm.Normal("α", 0, 100)
 β = pm.Normal("β", 0, 100)
 σ = pm.Exponential("σ", 1/100)

 μ = α + β*d["area"]

 y = pm.Normal("y", μ, σ,
observed=d["price"])

with pm.Model() as hier_model:

 μ_α = pm.Normal("μ_α", 0, 100)
μ_β = ...

 σ = pm.Exponential("σ", 1/100)
σ_α = σ_β = ...

 α = pm.Normal("α", μ_α, σ_α,
 shape=num_zip)
 β = pm.Normal("β", μ_β, σ_β,
 shape=num_zip)

 μ = α[d["zip"]] + β[d["zip"]]*d["area"]

 y = pm.Normal("y", μ, σ,
observed=d["price"])

Getting this into Python: PyMC3

with pm.Model() as hier_model:

 μ_α = pm.Normal("μ_α", 0, 100)
μ_β = ...

 σ = pm.Exponential("σ", 1/100)
σ_α = σ_β = ...

 α = pm.Normal("α", μ_α, σ_α,
 shape=num_zip)
 β = pm.Normal("β", μ_β, σ_β,
 shape=num_zip)

 μ = α[d["zip"]] + β[d["zip"]]*d["area"]

 y = pm.Normal("y", μ, σ,
observed=d["price"])

Getting this into Python: PyMC3

with pm.Model() as hier_model:

 μ_α = pm.Normal("μ_α", 0, 100)
μ_β = ...

 σ = pm.Exponential("σ", 1/100)
σ_α = σ_β = ...

 α = pm.Normal("α", μ_α, σ_α,
 shape=num_zip)
 β = pm.Normal("β", μ_β, σ_β,
 shape=num_zip)

 μ = α[d["zip"]] + β[d["zip"]]*d["area"]

 y = pm.Normal("y", μ, σ,
observed=d["price"])

Getting this into Python: PyMC3

with pm.Model() as hier_model:

 μ_α = pm.Normal("μ_α", 0, 100)
μ_β = ...

 σ = pm.Exponential("σ", 1/100)
σ_α = σ_β = ...

 α = pm.Normal("α", μ_α, σ_α,
 shape=num_zip)
 β = pm.Normal("β", μ_β, σ_β,
 shape=num_zip)

 μ = α[d["zip"]] + β[d["zip"]]*d["area"]

 y = pm.Normal("y", μ, σ,
observed=d["price"])

Getting this into Python: PyMC3

What about the priors?

What about the priors?

What about the priors?

with model:
 prior = pm.sample_prior_predictive()

with model:
 prior = pm.sample_prior_predictive()

What about the priors?

with model:
 prior = pm.sample_prior_predictive()

What about the priors?

with model:
 prior = pm.sample_prior_predictive()

What about the priors?

What about the priors?

What about the priors?

What about the priors?

What about the priors?

What about the priors?

with pm.Model() as hier_model:

 μ_α = pm.Normal("μ_α", 0, 20)
μ_β = pm.Normal("μ_β", 0, 5)

 σ = pm.Exponential("σ", 1/5)
σ_α = σ_β = ...

 α = pm.Normal("α", μ_α, σ_α,
 shape=num_zip)
 β = pm.Normal("β", μ_β, σ_β,
 shape=num_zip)

 μ = α[d["zip"]] + β[d["zip"]]*d["area"]

 y = pm.Normal("y", μ, σ,
observed=d["price"])

trace = pm.sample()

What about the priors?

Did it converge?

Did it converge?

import arviz as az

az.plot_trace(trace)

Did it converge?

Did it converge?

Some Bad Examples

Did it converge?

Some Bad Examples

Did it converge?

Some Bad Examples

Did it converge?

Some Bad Examples

Did it converge?

az.summary(trace)

Did it converge?

az.summary(trace)

Did it converge?

az.summary(trace)

Did it converge?

az.summary(trace)

Did it converge?

Rhat statistic smaller
1.05?

Effective sample size / iterations
greater 10%?

Monte Carlo se / posterior sd
smaller 10%?

How good does my model fit the
data?

How good does my model fit the data?

with hier_model:

 posterior_predictive = pm.sample_posterior_predictive(trace)

How good does my model fit the data?

How good does my model fit the data?

How good does my model fit the data?

Results, please!

Results, please!

Results, please!

Results, please!

Results, please!

What’s next?

What’s next?

● Iterate!
● More predictors!

○ Year of construction
○ House type
○ ...

● More hierarchies!
● Add group predictors!

○ Percentage of green areas
○ Economical indices

● Try different likelihoods
● Probably save more money...

Further resources Richard McElreath: Statistical Rethinking

- Port to PyMC3

Prior Recommendation by Stan Team

Michael Betancourts Case Studies

 BerlinBayesians

Icons by icons8

https://xcelab.net/rm/statistical-rethinking/
https://github.com/pymc-devs/resources/tree/master/Rethinking
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://betanalpha.github.io/writing/
https://www.meetup.com/de-DE/BerlinBayesians/
https://icons8.com

Thanks!

 @corrieaar

 corriebar
 Code and Notebooks

 www.samples-of-thoughts.com

Icons by icons8

https://github.com/corriebar/Bayesian-Workflow-with-PyMC
http://www.samples-of-thoughts.com
https://icons8.com

