Bayesian Workflow with PyMC and ArviZ

Corrie Bartelheimer

Data Scientist at Europace AG

$$y \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha + \beta \text{ area}$

$$y \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha + \beta \text{ area}$

$$\alpha \sim \text{Normal}(0, 100)$$

 $\beta \sim \text{Normal}(0, 100)$

$$\sigma \sim \text{Exponential}(1/100)$$

$$y \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha_{[ZIP]} + \beta_{[ZIP]} \text{ area}$

$$y \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha_{[ZIP]} + \beta_{[ZIP]} \text{ area}$

$$\alpha_{[ZIP]} \sim \text{Normal}(\mu_{\alpha}, \sigma_{\alpha})$$

 $\beta_{[ZIP]} \sim \text{Normal}(\mu_{\beta}, \sigma_{\beta})$

$$y \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha_{[ZIP]} + \beta_{[ZIP]} \text{ area}$

$$\alpha_{[ZIP]} \sim \text{Normal}(\mu_{\alpha}, \sigma_{\alpha})$$

 $\beta_{[ZIP]} \sim \text{Normal}(\mu_{\beta}, \sigma_{\beta})$

$$\mu_{\alpha}, \mu_{\beta} \sim \text{Normal}(0, 100)$$
 $\sigma_{\alpha}, \sigma_{\beta}, \sigma \sim \text{Exponential}(1/100)$

Getting this into Python

```
y \sim \text{Normal}(\mu, \sigma)
                                        import pymc3 as pm
\mu = \alpha + \beta area
                                        with pm.Model() as lin_model:
                                             \alpha = pm.Normal("\alpha", 0, 100)
                                             \beta = pm.Normal("\beta", 0, 100)
\alpha \sim \text{Normal}(0, 100)
                                             \sigma = pm.Exponential("\sigma", 1/100)
\beta \sim \text{Normal}(0, 100)
                                             \mu = \alpha + \beta*d["area"]
                                             y = pm.Normal("y", \mu, \sigma,
                                                        observed=d["price"])
\sigma \sim \text{Exponential}(1/100)
```

$y \sim \text{Normal}(\mu, \sigma)$

$$\mu = \alpha + \beta$$
 area

$$\alpha \sim \text{Normal}(0, 100)$$

$$\beta \sim \text{Normal}(0, 100)$$

$$\sigma \sim \text{Exponential}(1/100)$$

```
import pymc3 as pm
with pm.Model() as lin_model:
     \alpha = pm.Normal("\alpha", 0, 100)
     \beta = pm.Normal("\beta", 0, 100)
     \sigma = pm.Exponential("\sigma", 1/100)
    \mu = \alpha + \beta*d["area"]
     y = pm.Normal("y", \mu, \sigma,
               observed=d["price"])
```

$$y \sim \text{Normal}(\mu, \sigma)$$
$$\mu = \alpha + \beta \text{ area}$$

$$\alpha \sim \text{Normal}(0, 100)$$

 $\beta \sim \text{Normal}(0, 100)$

$$\sigma \sim \text{Exponential}(1/100)$$

```
import pymc3 as pm
with pm.Model() as lin_model:
     \alpha = pm.Normal("\alpha", 0, 100)
     \beta = pm.Normal("\beta", 0, 100)
     \sigma = pm.Exponential("\sigma", 1/100)
    \mu = \alpha + \beta*d["area"]
     y = pm.Normal("y", \mu, \sigma,
               observed=d["price"])
```

$$y \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha + \beta \text{ area}$

```
\alpha \sim \text{Normal}(0, 100)
```

 $\beta \sim \text{Normal}(0, 100)$

 $\sigma \sim \text{Exponential}(1/100)$

```
import pymc3 as pm
with pm.Model() as lin_model:
     \alpha = pm.Normal("\alpha", 0, 100)
     \beta = pm.Normal("\beta", 0, 100)
     \sigma = pm.Exponential("\sigma", 1/100)
    \mu = \alpha + \beta*d["area"]
     y = pm.Normal("y", \mu, \sigma,
               observed=d["price"])
```

$$y \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha_{[ZIP]} + \beta_{[ZIP]} \text{ area}$

$$\alpha_{[ZIP]} \sim \text{Normal}(\mu_{\alpha}, \sigma_{\alpha})$$

 $\beta_{[ZIP]} \sim \text{Normal}(\mu_{\beta}, \sigma_{\beta})$

$$\mu_{\alpha}, \mu_{\beta} \sim \text{Normal}(0, 100)$$

 $\sigma_{\alpha}, \sigma_{\beta}, \sigma \sim \text{Exponential}(1/100)$

```
with pm.Model() as hier_model:
      \mu_{\alpha} = \text{pm.Normal}(\mu_{\alpha}, 0, 100)
      \mu_{\beta} = \dots
      \sigma = pm.Exponential("\sigma", 1/100)
      \sigma_{\alpha} = \sigma_{\beta} = \dots
      \alpha = pm.Normal("\alpha", \mu_{\alpha}, \sigma_{\alpha})
                                     shape=num_zip)
      \beta = pm.Normal("\beta", \mu_{\beta}, \sigma_{\beta})
                                     shape=num_zip)
      \mu = \alpha[d["zip"]] + \beta[d["zip"]]*d["area"]
      y = pm.Normal("y", \mu, \sigma,
                  observed=d["price"])
```

$$y \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha_{[ZIP]} + \beta_{[ZIP]} \text{ area}$

$$\alpha_{[ZIP]} \sim \text{Normal}(\mu_{\alpha}, \sigma_{\alpha})$$

 $\beta_{[ZIP]} \sim \text{Normal}(\mu_{\beta}, \sigma_{\beta})$

$$\mu_{\alpha}, \mu_{\beta} \sim \text{Normal}(0, 100)$$

 $\sigma_{\alpha}, \sigma_{\beta}, \sigma \sim \text{Exponential}(1/100)$

```
with pm.Model() as hier_model:
      \mu_{\alpha} = \text{pm.Normal}(\mu_{\alpha}, 0, 100)
      \mu_{\beta} = \dots
      \sigma = pm.Exponential("\sigma", 1/100)
      \sigma_{\alpha} = \sigma_{\beta} = \dots
      \alpha = pm.Normal("\alpha", \mu_{\alpha}, \sigma_{\alpha})
                                     shape=num_zip)
      \beta = pm.Normal("\beta", \mu_{\beta}, \sigma_{\beta})
                                     shape=num_zip)
      \mu = \alpha[d["zip"]] + \beta[d["zip"]]*d["area"]
      y = pm.Normal("y", \mu, \sigma,
                  observed=d["price"])
```

$$y \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha_{[ZIP]} + \beta_{[ZIP]} \text{ area}$

$$\alpha_{[ZIP]} \sim \text{Normal}(\mu_{\alpha}, \sigma_{\alpha})$$

 $\beta_{[ZIP]} \sim \text{Normal}(\mu_{\beta}, \sigma_{\beta})$

```
\mu_{\alpha}, \mu_{\beta} \sim \text{Normal}(0, 100)

\sigma_{\alpha}, \sigma_{\beta}, \sigma \sim \text{Exponential}(1/100)
```

```
with pm.Model() as hier_model:
      \mu_{\alpha} = \text{pm.Normal}(\mu_{\alpha}, 0, 100)
      \mu_{\beta} = \dots
      \sigma = pm.Exponential("\sigma", 1/100)
      \sigma_{\alpha} = \sigma_{\beta} = \dots
      \alpha = pm.Normal("\alpha", \mu_{\alpha}, \sigma_{\alpha})
                                     shape=num_zip)
      \beta = pm.Normal("\beta", \mu_{\beta}, \sigma_{\beta},
                                     shape=num_zip)
      \mu = \alpha[d["zip"]] + \beta[d["zip"]]*d["area"]
      y = pm.Normal("y", \mu, \sigma,
                  observed=d["price"])
```

$$y \sim \text{Normal}(\mu, \sigma)$$

 $\mu = \alpha_{[ZIP]} + \beta_{[ZIP]} \text{ area}$

$$\alpha_{[ZIP]} \sim \text{Normal}(\mu_{\alpha}, \sigma_{\alpha})$$

 $\beta_{[ZIP]} \sim \text{Normal}(\mu_{\beta}, \sigma_{\beta})$

$$\mu_{\alpha}, \mu_{\beta} \sim \text{Normal}(0, 100)$$

 $\sigma_{\alpha}, \sigma_{\beta}, \sigma \sim \text{Exponential}(1/100)$

```
with pm.Model() as hier_model:
      \mu_{\alpha} = pm.Normal("\mu_{\alpha}", 0, 100)
      \mu_{\beta} = \dots
      \sigma = pm.Exponential("\sigma", 1/100)
      \sigma_{\alpha} = \sigma_{\beta} = \dots
      \alpha = pm.Normal("\alpha", \mu_{\alpha}, \sigma_{\alpha})
                                    shape=num_zip)
      \beta = pm.Normal("\beta", \mu_{\beta}, \sigma_{\beta},
                                    shape=num_zip)
      \mu = \alpha[d["zip"]] + \beta[d["zip"]]*d["area"]
      y = pm.Normal("y", \mu, \sigma,
                  observed=d["price"])
```

 $\alpha \sim \text{Normal}(0, 100)$

 $\beta \sim \text{Normal}(0, 100)$

 $\sigma \sim \text{Exponential}(1/100)$

```
\alpha \sim \text{Normal}(0, 100)
\beta \sim \text{Normal}(0, 100)
\sigma \sim \text{Exponential}(1/100)
```

```
with model:
    prior = pm.sample_prior_predictive()
```

```
\alpha \sim \text{Normal}(0, 100)
\beta \sim \text{Normal}(0, 100)
\sigma \sim \text{Exponential}(1/100)
```

with model:
 prior = pm.sample_prior_predictive()


```
\alpha \sim \text{Normal}(0, 100)
\beta \sim \text{Normal}(0, 100)
\sigma \sim \text{Exponential}(1/100)
```

with model:
 prior = pm.sample_prior_predictive()


```
\alpha \sim \text{Normal}(0, 100)
\beta \sim \text{Normal}(0, 100)
\sigma \sim \text{Exponential}(1/100)
```

with model:
 prior = pm.sample_prior_predictive()

 $\alpha \sim \text{Normal}(0, 100)$

 $\beta \sim \text{Normal}(0, 100)$

 $\sigma \sim \text{Exponential}(1/100)$

 $\alpha \sim \text{Normal}(0, 20)$

 $\beta \sim \text{Normal}(0, 5)$

 $\sigma \sim \text{Exponential}(1/5)$

 $\alpha \sim \text{Normal}(0, 20)$

 $\beta \sim \text{Normal}(0, 5)$

 $\sigma \sim \text{Exponential}(1/5)$

 $\alpha \sim \text{Normal}(0, 20)$

 $\beta \sim \text{Normal}(0, 5)$

 $\sigma \sim \text{Exponential}(1/5)$


```
\alpha \sim \text{Normal}(0, 20)
\beta \sim \text{Normal}(0, 5)
\sigma \sim \text{Exponential}(1/5)
```

```
with pm.Model() as hier_model:
     \mu_{\alpha} = pm.Normal("\mu_{\alpha}", 0, 20)
      \mu_{\beta} = \text{pm.Normal}(\mu_{\beta}, 0, 5)
      \sigma = pm.Exponential("\sigma", 1/5)
      \sigma_{\alpha} = \sigma_{\beta} = \dots
      \alpha = pm.Normal("\alpha", \mu_{\alpha}, \sigma_{\alpha})
                                    shape=num_zip)
      \beta = pm.Normal("\beta", \mu_{\beta}, \sigma_{\beta},
                                    shape=num_zip)
      \mu = \alpha[d["zip"]] + \beta[d["zip"]]*d["area"]
      y = pm.Normal("y", \mu, \sigma,
                  observed=d["price"])
      trace = pm.sample()
```

```
import arviz as az
az.plot_trace(trace)
```


Some Bad Examples

2.5

2.4

2.6

2.7

2.8

2.9

2.5

200

400

800

600

3.0

az.summary(trace)

	mean	sd	hpd_3%	hpd_97%	mcse_mean	mcse_sd	ess_mean	ess_sd	ess_bulk	ess_tail	r_hat
mu_alpha	3.642	0.057	3.527	3.741	0.001	0.001	5524.0	5524.0	5535.0	3184.0	1.0
mu_beta	2.775	0.099	2.596	2.966	0.001	0.001	5782.0	5781.0	5766.0	3343.0	1.0
alpha[0]	4.976	0.161	4.688	5.289	0.002	0.002	5618.0	5590.0	5626.0	3249.0	1.0
alpha[1]	5.097	0.289	4.545	5.616	0.004	0.003	6018.0	6018.0	6017.0	3309.0	1.0
alpha[2]	5.128	0.201	4.731	5.483	0.002	0.002	7223.0	7223.0	7272.0	3517.0	1.0
		***	***	***		***	***	***	***		
beta[217]	2.668	1.280	0.290	4.958	0.014	0.012	7809.0	5449.0	7833.0	2742.0	1.0
beta[218]	0.504	0.792	-0.999	1.999	0.009	0.011	7653.0	2519.0	7656.0	3127.0	1.0
sigma_alpha	0.741	0.044	0.664	0.830	0.001	0.000	4491.0	4491.0	4466.0	3015.0	1.0
sigma_beta	1.274	0.071	1.146	1.415	0.001	0.001	4779.0	4779.0	4726.0	3035.0	1.0
sigma	1.203	0.010	1.184	1.221	0.000	0.000	7403.0	7403.0	7381.0	3018.0	1.0

az.summary(trace)

	mean	sd	hpd_3%	hpd_97%	mcse_mean	mcse_sd	ess_mean	ess_sd	ess_bulk	ess_tail	r_hat
mu_alpha	3.642	0.057	3.527	3.741	0.001	0.001	5524.0	5524.0	5535.0	3184.0	1.0
mu_beta	2.775	0.099	2.596	2.966	0.001	0.001	5782.0	5781.0	5766.0	3343.0	1.0
alpha[0]	4.976	0.161	4.688	5.289	0.002	0.002	5618.0	5590.0	5626.0	3249.0	1.0
alpha[1]	5.097	0.289	4.545	5.616	0.004	0.003	6018.0	6018.0	6017.0	3309.0	1.0
alpha[2]	5.128	0.201	4.731	5.483	0.002	0.002	7223.0	7223.0	7272.0	3517.0	1.0
***		***	***	***	***		***	***	***		
beta[217]	2.668	1.280	0.290	4.958	0.014	0.012	7809.0	5449.0	7833.0	2742.0	1.0
beta[218]	0.504	0.792	-0.999	1.999	0.009	0.011	7653.0	2519.0	7656.0	3127.0	1.0
igma_ <mark>a</mark> lpha	0.741	0.044	0.664	0.830	0.001	0.000	4491.0	4491.0	4466.0	3015.0	1.0
sigma_beta	1.274	0.071	1.146	1.415	0.001	0.001	4779.0	4779.0	4726.0	3035.0	1.0
sigma	1.203	0.010	1.184	1.221	0.000	0.000	7403.0	7403.0	7381.0	3018.0	1.0

az.summary(trace)

	mean	sd	hpd_3%	hpd_97%	mcse_mean	mcse_sd	ess_mean	ess_sd	ess_bulk	ess_tail	r_hat
mu_alpha	3.642	0.057	3.527	3.741	0.001	0.001	5524.0	5524.0	5535.0	3184.0	1.0
mu_beta	2.775	0.099	2.596	2.966	0.001	0.001	5782.0	5781.0	5766.0	3343.0	1.0
alpha[0]	4.976	0.161	4.688	5.289	0.002	0.002	5618.0	5590.0	5626.0	3249.0	1.0
alpha[1]	5.097	0.289	4.545	5.616	0.004	0.003	6018.0	6018.0	6017.0	3309.0	1.0
alpha[2]	5.128	0.201	4.731	5.483	0.002	0.002	7223.0	7223.0	7272.0	3517.0	1.0
		***		***		***		***		***	
beta[217]	2.668	1.280	0.290	4.958	0.014	0.012	7809.0	5449.0	7833.0	2742.0	1.0
beta[218]	0.504	0.792	-0.999	1.999	0.009	0.011	7653.0	2519.0	7656.0	3127.0	1.0
igma_alpha	0.741	0.044	0.664	0.830	0.001	0.000	4491.0	4491.0	4466.0	3015.0	1.0
sigma_beta	1.274	0.071	1.146	1.415	0.001	0.001	4779.0	4779.0	4726.0	3035.0	1.0
sigma	1.203	0.010	1.184	1.221	0.000	0.000	7403.0	7403.0	7381.0	3018.0	1.0

az.summary(trace)

	mean	sd	hpd_3%	hpd_97%	mcse_mean	mcse_sd	ess_mean	ess_sd	ess_bulk	ess_tail	r_hat
mu_alpha	3.642	0.057	3.527	3.741	0.001	0.001	5524.0	5524.0	5535.0	3184.0	1.0
mu_beta	2.775	0.099	2.596	2.966	0.001	0.001	5782.0	5781.0	5766.0	3343.0	1.0
alpha[0]	4.976	0.161	4.688	5.289	0.002	0.002	5618.0	5590.0	5626.0	3249.0	1.0
alpha[1]	5.097	0.289	4.545	5.616	0.004	0.003	6018.0	6018.0	6017.0	3309.0	1.0
alpha[2]	5.128	0.201	4.731	5.483	0.002	0.002	7223.0	7223.0	7272.0	3517.0	1.0
***		***	***	***	***	***	***	***	***	***	
beta[217]	2.668	1.280	0.290	4.958	0.014	0.012	7809.0	5449.0	7833.0	2742.0	1.0
beta[218]	0.504	0.792	-0.999	1.999	0.009	0.011	7653.0	2519.0	7656.0	3127.0	1.0
sigma_alpha	0.741	0.044	0.664	0.830	0.001	0.000	4491.0	4491.0	4466.0	3015.0	1.0
sigma_beta	1.274	0.071	1.146	1.415	0.001	0.001	4779.0	4779.0	4726.0	3035.0	1.0
sigma	1.203	0.010	1.184	1.221	0.000	0.000	7403.0	7403.0	7381.0	3018.0	1.0

443 rows × 11 columns

Monte Carlo se / posterior sd smaller 10%?

Effective sample size / iterations greater 10%?

Effective sample size / iterations

Rhat statistic smaller 1.05?


```
with hier_model:
    posterior_predictive = pm.sample_posterior_predictive(trace)
```

Observed data vs Posterior predictive

Observed data vs Posterior predictive

Observations vs average simulated value

Results, please!

Results, please!

Results, please!

What's next?

What's next?

- Iterate!
- More predictors!
 - Year of construction
 - House type
 - 0 ...
- More hierarchies!
- Add group predictors!
 - Percentage of green areas
 - Economical indices
- Try different likelihoods
- Probably save more money...

Further resources

Richard McElreath: Statistical Rethinking

- Port to PyMC3

Prior Recommendation by Stan Team

Michael Betancourts Case Studies

Thanks!

@corrieaar

corriebar

<u>Code and Notebooks</u>

www.samples-of-thoughts.com

